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This opening article of the issue is intended to provide a review of the ­ eld of nonlin-
ear ship dynamics and to demonstrate the importance of the subject in the context
of naval architecture. A list of relevant research topics that have received attention
in recent years is included in the ­ rst section of the paper. This sets the scene for
a brief discussion about the content and contribution of the articles that make up
the Theme Issue. In order to facilitate understanding by non-specialists, we include
an outline of the general concepts of nonlinear dynamics. Furthermore, we provide
a detailed review of the evolution of ship research of the considered type since the
1970s, including a rather lengthy bibliography. We discuss the latest ideas about ship
capsize and we include a special section summarizing the recent advances with regard
to the mechanisms of ship capsize in astern seas. We close the article by o¬ering some
ideas about future directions for research.
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1. Introduction

In the ­ eld of nonlinear ship dynamics we explore the onset and evolution of the
unfamiliar, and often unsafe, dynamic responses beyond the linearity regime, which
are not amenable to the conventional techniques of seakeeping theory. The presence
of nonlinearity in the relation between excitation and response in a dynamical system
creates the prospect of having multiple solutions for certain values of the system’s
parameters. This could further lead to a plethora of very complicated phenomena
even when the type of nonlinearity is very simple; such as a quadratic or cubic term in
the sti¬ness component of an otherwise ordinary linear driven oscillator (Thompson
& Stewart 1986). Unexpected and violent transient motions leading to system escape,
irregular behaviour under regular excitation, subtle boundaries between the domains
of coexisting responses, and sensitive dependence on initial conditions are some well-
known manifestations of nonlinear behaviour.

The above ideas are not yet fully domesticated in naval architecture, a ­ eld that is
basically dominated by `linear’ concepts. However, nonlinear phenomena have been
found to underlie ship dynamics in several instances, much as they do for the dynam-
ics of other engineering systems (Thompson & Bishop 1994; Moon 1999). Scienti­ c
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curiosity apart, their particular engineering signi­ cance stems from their frequent
connection with safety-critical behaviour. For example, the roll stability of a ship
(the term stability used here in a liberal sense) is considerably reduced once it is
exposed to near resonant waves with steepness higher than some critical level. The
reason is rapid loss of integrity of the domain of bounded (and thus safe) roll, due
to a purely nonlinear mechanism. In other cases, variation of certain system param-
eters could suddenly render viable large motions with unusual characteristics. These
varied parameters could either be representatives of the environment in which a ship
operates, like the wave height and frequency, wind speed, etc., or they could re®ect
the ship’s own operational and design characteristics, like the natural frequency and
the damping in a direction of motion, the desired ship course, etc.

By using the conceptual and computational framework of nonlinear dynamics, ship
scientists around the world have recently produced some wonderful new insights into
phenomena of ship motion instability. An ensemble of `geometry-led’ numerical and
analytical techniques has been the basis of these investigations, applied in conjunction
with mathematical models of various degrees of sophistication. It is very encouraging
that descriptions of phenomena experienced in the ocean by mariners often coincide
closely with the theoretically predicted patterns. Research topics that have received
particular attention recently are listed here.

(1) Ship capsize in regular `beam’ seas.

(2) Development of transient capsize criteria based on Melnikov’s method.

(3) Criteria of ship capsize in random waves.

(4) Large-amplitude rolling and capsize in longitudinal waves.

(5) Single-degree and coupled surge dynamics; especially the occurrence of asym-
metric surging and surf-riding.

(6) Broaching and its connection with capsize.

(7) Coupled rolling with liquid motion in an internal compartment.

(8) The behaviour of high-speed planing craft; especially the heave-pitch oscilla-
tions known as the porpoising condition.

(9) Oscillations of moored, anchored or towed ships under the e¬ects of currents
(mainly for yaw motion) or waves (mainly for surge).

(10) Path control of marine vehicles and directional instability in strong wind.

Some of these achievements will be reviewed below. Awareness of the fund of
knowledge created by these investigations|combined with some familiarity, at a
user level, with the techniques of nonlinear dynamics|will open new horizons for
practising naval architects in their quest to maximize ship safety.

Increased computer power nowadays allows us to carry out investigations on the
basis of mathematical models featuring a considerable degree of detail. Indeed, one of
the greatest challenges for the future will be interfacing, and, ultimately, integration,
with the advances currently taking place in the area of numerical ship hydrodynam-
ics (Beck 1996; Huang & Sclavounos 1998). This will allow an explicit account of
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the ®ow around ships’ hulls and will supply the device for investigating the e¬ect
of the shape of the hull and the appendages on the nonlinear phenomena. Such an
optimistic view is somehow counterbalanced, however, by the fact that the burden of
identifying areas of critical behaviour becomes very considerable when the dynam-
ical system is multi-dimensional (let alone when it is in­ nite dimensional, as is the
true nature of the problem of a solid body’s motion in a ®uid). The derivation of
reduced-order approximations of the original system, either through some rational
dimension reduction procedure, or, merely, and usually more e¬ectively, through
insightful thinking, is very topical and will probably remain so because simple mod-
els are indispensable for developing an understanding about complex processes. To
quote Wehausen (1979) in his tribute to Weinblum: `a direct attack upon a too
complicated problem may be in danger of not uncovering the underlying principles’.
Much of the current interest in nonlinear ship dynamics was stirred by the success
of the approach in unravelling, in a systematic way, the principles governing unsafe
behaviour on the basis of simple generic models.

2. Content of the present Theme Issue

With the present Theme Issue we have attempted to present the various facets
of ongoing research in the ­ eld. Contributions from the following areas have been
included.

(1) Investigations on instability phenomena based on simpli­ ed models.

(2) Criteria of nonlinear rolling and capsize in a random-wave environment.

(3) Studies of nonlinear behaviour with detailed mathematical models.

(4) Observation and physical veri­ cation of complex behaviour.

The ­ rst paper is from Jiang et al ., and it is the latest addition to an impressive
series of papers produced by `the Michigan group’ over the years on this subject.
In their present work they attempt to extend the Melnikov analysis applied for the
single-roll capsize problem in a random sea in order to include the so-called `memory
e¬ect’. In many studies of nonlinear dynamics it has been quite common to assume
that the hydrodynamic force is only a function of the instantaneous ship motion. In a
strict sense this is not accurate, because, generally, the whole history of motion plays
a role due to wave radiation from the ship’s oscillation and/or viscous e¬ects. Taking
this feature into account would require inclusion of convolution integrals leading to
an integrodi¬erential form of motion equations and in­ nite-dimensional state space.
These authors have used the concept of phase space ®ux in their study, and they
approximated the memory e¬ect through an auxiliary system model, whose output
represents an excitation to the original non-memory one. They have carried out the
Melnikov analysis of the enlarged system and they have shown some examples of
how the memory term could in®uence the critical wave height for capsize. Some
comparisons with non-memory models using constant characteristic frequencies are
also presented.

The work of Murashige et al . at the University of Tokyo deals with the problem
of ship motion when some quantity of water exists in an internal compartment. This
problem has received considerable attention recently because it can give rise to robust
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chaos. These authors have carried out both numerical and experimental studies, and,
despite a simple lumped-mass approach to the modelling of internal water movement,
the agreement between some of their ­ ndings (­ gures 2 and 13 of their paper) is
encouraging. They have used two di¬erent mathematical models, the simpler of which
has the form of a coupled Du¯ ng’s equation with a bistable restoring term and a
nonlinear inertial matrix. An interesting account of the occurring bifurcations is
given. The authors also speculate that the cause of the chaotic responses is a chain
of codimension-two bifurcations. Analyses of experimental data are presented in the
paper, including data-smoothing techniques, phase-space reconstruction with delay
time parameters, calculation of Lyapunov exponents, and derivation of attractor
dimension.

The paper of Spyrou of the National Technical University of Athens is an analysis of
the coupled roll and surge dynamics. In steep following waves, the nonlinear features
of the pendulum-like surge dynamics may become prevalent, resulting in a motion
pattern in which the ship is spending more time near the crests of the waves than
near the troughs. However, as restoring is lowest around a crest, such a prolonged
stay at the crest can considerably in®uence the propensity for capsize. Inspired by
this idea, the author has developed a new equation of roll motion in a following sea,
which takes into account the surge dynamics. Another useful facet of this paper is the
demonstration of the layout of the stability transition lines of the coupled system,
which are contrasted with those of the ordinary Mathieu-type system. In particular,
the evolution of the capsize region in conjunction with the emergence of surf-riding
behaviour due to the occurrence of a homoclinic connection is very interesting. It
seems that these phenomena tend to raise the probability of a quick capsize, and,
therefore, their omission could result in underestimation of the safety margin of a
ship.

The paper of Kreuzer & Wendt informs us about ongoing work at the Technical
University of Hamburg{Harburg, where the main focus is the study of nonlinear
phenomena linked with ship capsize. The authors are using a full six-degrees-of-
freedom mathematical model with frequency-dependent hydrodynamic coe¯ cients.
A standard two-dimensional singularity method is used in the calculation of the
hydrodynamic forces, while the inclusion of `memory’ has led to a state-space repre-
sentation with 164 degrees of freedom. Their investigations are carried out initially
for a ­ xed rudder, but later they have used a proportional integral di¬erential (PID)
autopilot in order to control the rudder’s movement. They have presented animations
of realistic ship behaviour in waves during capsize in (stern) quartering waves. Some
subharmonic and chaotic responses are identi­ ed in extreme waves.

The paper of Oh, Nayfeh & Mook from Virginia Tech describes the main ­ ndings
of a combined theoretical and experimental investigation on indirectly excited rolling
in head or following seas. Two speci­ c phenomena are analysed in detail: the ­ rst is a
parametric resonance case in roll caused by the pitch and heave motions of a ship in
waves. The equations describing heave and pitch are considered decoupled; however,
the roll equation presents nonlinear couplings with both of these motions. The main
safety-related ­ nding here is the discovery of a subcritical pitchfork bifurcation and
it is very notable that its existence was con­ rmed during experiments with a model
ship. Another case analysed in this paper is autoparametric resonance for coupled
pitch and roll. Again dangerous subcritical-type instability phenomena were found.
This paper shows that it is certainly possible to correlate theoretical ­ ndings with
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the results of model experiments, despite the complex character of the behaviour and
the many parameters that are involved in such experiments.

Umeda & Hamamoto of Osaka University have collected some very interesting
visual images of ship behaviour in connection with four di¬erent capsize modes in
high-stern-quartering seas. These images were obtained during experiments based on
radio-controlled models. The experiments were carried out at the Marine Dynamics
Basin of the National Research Institute of Fisheries Engineering of Japan. The
authors have reproduced capsize due to broaching and due to parametric instability.
Also, they have shown capsize according to two less frequently discussed modes:
capsize after bow diving; and capsize due to a kind of pure loss with drift motion
involved.

The ­ nal contribution featuring model experiments comes from Ikeda & Katayama
of the University of Osaka Prefecture and is focused on ship behaviour at high speed.
These authors have studied the onset of the so-called porpoising oscillations (self-
sustained pitch and heave) for a marine craft with spray rails operating up to a Froude
number as high as 6.0. On the basis of a one-quarter-scale model they measured the
forces with captive tests for various running attitudes and speeds, and they found
nonlinearity for heave and pitch restoring at high speed, especially for the cross-
coupling terms. This information was introduced into a mathematical model in order
to simulate the initial occurrence and further build-up of porpoising. The derived
predictions of porpoising characteristics were compared with direct experimental
measurements and found to be in good agreement.

The last three contributions are concerned with the characteristics of nonlinear
rolling in a random seaway. Roberts & Vasta of the University of Sussex have applied
an averaging procedure, showing that, under certain conditions, the energy envelope
of the roll response can be modelled as a continuous Markov process. Their approach
could be useful for deriving probability density functions of roll response when the
time to capsize is very long. Another potential use of this work is in the derivation
of damping and excitation data from the so-called drift and di¬usion coe¯ cients
calculated on the basis of actual ship roll-response information.

The papers of Senjanovíc and Falzarano with their associates are more mainstream
nonlinear-dynamics investigations of ship capsize under stochastic wave excitation.
These works are highly complementary, as they seem to approach the same problem
from a di¬erent perspective. Senjanovíc, Cipríc & Parunov from the University of
Zagreb followed a repetitive simulation procedure in order to produce a chart giving
the probability of capsize (for a certain wave spectrum) in terms of ship-motion
direction and speed. As usual, they have derived the (irregular) wave forcing by
a sum of a ­ nite number of harmonic wave components with random phases. As
the detailed form of the righting-arm (GZ)-curve is taken into account, this chart
could be used also for linking quantitatively the shape of the (GZ)-curve with the
probability of capsize.

Instead of performing many simulations, Vishnubhotla with Falzarano (Univer-
sity of New Orleans) and Vakakis (University of Illinois at Urbana) attempted to
derive approximate analytical expressions for the inset and outset of the hill-top
saddle under pseudo-random-wave excitation. They used techniques from the theory
of rapidly varying excitations and they applied for a cubic-type restoring function
whose Hamiltonian manifold solution is well known. The analytical approach could
have some problems for more realistic higher-order restoring polynomials; however,
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Figure 1. Evolution of steady-state responses for increasing excitation based on
a roll equation allowing only one-sided escape (Thompson 1996).

the authors believe that the numerical route could be applied without problems in
these cases.

3. Introductory aspects of nonlinear dynamics

A simple, harmonically forced oscillator with a quadratic `softening’ nonlinearity in
restoring has been used as a generic model for studying various physical phenomena,
one being one-sided ship capsize in `beam’ waves (Thompson 1997). The evolution of
the responses as the forcing is stepped up amply demonstrates several characteristic
features of nonlinear systems (­ gure 1). Most familiar are the `skewed’ (to the left
for softening nonlinearity) frequency-response curve and the gradual appearance of
higher harmonics `distorting’ the ordinary harmonic motion. At a certain level of
forcing, the e¬ect of nonlinearity becomes so drastic on the upper limb that the
original response turns unstable with a stable subharmonic emerging. Qualitative
changes in the character of behaviour are manifestations of bifurcations, which are
very common phenomena in nonlinear systems. They can be realized according to
a small number of generic patterns, which may involve smooth or abrupt transition
towards another state.

The discovery and in-depth study of bifurcations are key tasks in the exploration
of ship dynamics. The robustness of the bifurcations in variations of the mathemat-
ical model allows us to draw certain conclusions about the behaviour of the system
without necessarily having a complete mathematical model (almost universally the
case when studying extreme ship motions in waves). This property could be exploited
during free-running ship model tests in large waves, where making direct compar-
isons between theory and experiment is non-trivial, as the number of unknowns is
very large and some of the parameters are practically non-controllable. The min-
imum number of system (`control’) parameters that render a bifurcation robust
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Figure 2. Codimension-one local bifurcations: (i) ° ip, (ii) pitchfork. Both of these may appear
as: (iii) supercritical, or (iv) subcritical. Other possible bifurcations are: (v) the folds, (vi) super-
critical Hopf and (vii) subcritical Hopf.

(`structurally stable’) determines the codimension of this bifurcation. Bifurcation
phenomena are generally classi­ ed as local or global. Local bifurcation phenomena
correspond to the creation, disappearance or change in stability of a steady-state
solution. Local, codimension-1 bifurcations are the fold (also known as the saddle-
node bifurcation, turning point or limit point), the pitchfork, the ®ip (period dou-
bling), and the Hopf bifurcation (­ gure 2). All these have con­ rmed relevance to ship
motions. Of particular interest for engineering systems are those bifurcations that
do not create a stable state in the vicinity past the bifurcation point. At a fold, no
solution exists at all, and a jump towards some distant state or even towards in­ nity
becomes inevitable. A similarly dangerous jump will arise at a pitchfork, ®ip or Hopf
bifurcation if these are of a subcritical type. A classi­ cation of generic bifurcations
for dissipative dynamical systems is given in Thompson et al . (1994).

However, the study of bifurcations in a steady-state sense does not o¬er a complete
account of nonlinear behaviour. Unsafe transitions are, by their very nature, extreme
unsteady phenomena. Also, in the continually changing conditions of the ocean, a
ship will only rarely operate in a steady condition. The level of excitation required
for system escape during a transient is lower than that of the steady state, and, thus,
safety-margin predictions based on steady states could overestimate the true safety
margin. The assessment of critical behaviour requires, therefore, some understanding
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of the principles governing transient motions. Generally, such an understanding can
be acquired more easily if a geometric approach is adopted in which the motions’
characteristics are studied in the so-called phase (or state) space, or through its two-
dimensional projections. The phase space is basically an enlarged physical space.
Its dimension is determined by the number of initial conditions required in order
to obtain, from the motion equations, a unique solution in time. In the case of
undriven rolling, for example, it su¯ ces to know the initial roll angle (i.e. the value
at t = 0) and the initial roll velocity, in order to determine the solution at a later
time instant; so the state-space dimension is, in this case, 2. The continuous time
evolution of a solution produces a trajectory (also called an orbit). Such trajectories
cannot cross in phase space; otherwise, at the intersection point there would exist
non-unique evolution. Stationary steady solutions are represented in state space by
points, while periodic solutions appear as closed curves. Stable solutions are called
attractors (or sinks) because the trajectories starting from nearby points tend to
end on these. The unstable solutions are called repellers (or sources). Quite often we
may have attraction in certain directions and repulsion in the others. This is the case
of saddle. The evolution of initial conditions produces a ®ow in phase space. When
the steady response contains incommensurate frequencies we have a quasi-periodic
attractor or repeller (`leaving’ on a torus). In some cases the response is characterized
by broad-band noise and extreme sensitivity to initial conditions, despite the fact
that the system is forced regularly. This is the case of a chaotic response. Typical
routes to chaos are through a cascade of period-doubling bifurcations, as exhibited in
­ gure 1 (the ratio of the distance between successive bifurcation frequencies converges
to the universal constant 4.669, ­ rst discovered by Feigenbaum); through quasi-
periodicity and through intermittency (Berǵe et al . 1984). The ­ rst two routes have
been discussed in the context of ship motions (Virgin 1987; Rainey & Thompson
1991; Spyrou 1996b; Murashige & Aihara 1998a).

A key concept required for the study of transients is the basin (domain) of attrac-
tion, representing the set of initial conditions that lead to a certain attractor for
­ xed control parameters’ settings. Conversely, the basin of attraction may also be
de­ ned in the control space for ­ xed initial conditions. For a simple two-dimensional
system the boundary of the basin of attraction is determined by those special orbits
that approach (in in­ nite time) nearby saddle-type states (­ gure 3). Together with
their `twin’ orbits, which leave these saddles, they are usually called invariant mani-
folds, or, more correctly, inset (if entering a saddle) and outset (if leaving a saddle).
These manifolds can sometimes become entangled in a very intricate way, producing
boundaries that are not sharp. The critical event leading to such a development is
the tangency of a pair of manifolds originating from the same (`homoclinic’) or from
di¬erent (`heteroclinic’) saddles. This is a global bifurcation phenomenon creating a
major phase-space rearrangement (­ gure 3). Such phenomena are very critical for
the system’s integrity because they are associated with rapid loss from within the
area of the safe basin (­ gure 4). They also generate transient chaos: orbits started
at certain initial conditions wander in an apparently random manner, albeit that
they settle to a repeating pattern in the long term. Further stepping-up of a critical
control parameter, however, such as the forcing amplitude, is likely to create chaos
in the more familiar steady-state sense too.

Heteroclinic/homoclinic tangencies have been linked to the process of ship capsize
in resonant beam seas (Thompson & Soliman 1990). Their occurrence can be pre-
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Figure 3. Global bifurcations with known relevance for ship dynamics.
(a) Homoclinic tangency in a map; (b) homoclinic saddle connection.
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Figure 4. Loss of engineering integrity due to erosion of the safe basin of attraction
(Thompson & Soliman 1990).

dicted either numerically or, in an approximate sense, analytically. The analytical
route has been very popular in the recent past, and is based on the so-called Melnikov
method of analytical mechanics, which, in a strict sense, is valid only for in­ nites-
imal damping (e.g. Guckenheimer & Holmes 1983). The main task in this method
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Figure 5. Global integrity contours for the òne-sided-escape’ equation. Remaining safe basin
area shown as a percentage, ­ = 0:1 (Thompson 1996).

is to express the distance between the critical pair of manifolds as a function of the
ship and environmental parameters. Then, by setting this distance to zero, we can
determine the critical combination of these parameters. This condition is equivalent,
with a balancing of the energy coming in through forcing with the energy dissipated
through damping, for the remotest bounded orbit (for a Hamiltonian system, this
is the homoclinic one). The bifurcation diagram of the simple oscillator of ­ gure 1
including the Melnikov curve as well as the numerical prediction of the homoclinic
connection is shown in ­ gure 5.

Another type of global bifurcation that has manifested itself in ship dynamics is
the so-called homoclinic saddle connection, which is a dangerous `blue-sky’ event. A
saddle `approaches’ an existing, stable, periodic orbit until there is contact (equiv-
alently, an inset{outset pair of the saddle touches the periodic orbit tangentially).
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The outcome is the sudden disappearance of the periodic orbit from phase space
(­ gure 3). Such an event has been identi­ ed to be behind the so-called surf-riding
condition, and it is the main cause of broaching (Spyrou 1996a).

It is quite straightforward to identify basins of attraction and extract the phase-
space organization through discretization of the phase space and direct integration
from the nodes of a dense grid of initial conditions. A more e¯ cient, computationally,
version of this method is the cell-to-cell mapping technique, which ensures that points
whose evolution is known are not examined repetitively (Hsu 1987). These methods
are generally very successful for two-dimensional Poincaŕe sections (a Poincaŕe sec-
tion is basically a section through phase space transverse to the ®ow that allows the
study of the dynamics on a plane), but their e¯ ciency falls quickly as the phase-
space dimension is increased. For example, for a typical 12-dimensional phase space
required for the general study of ship dynamics in all six degrees of freedom and
a modest grid density of 300 nodes in each direction, simulations for 30012 points
would be needed! More intelligent searching techniques are therefore required. The
analysis of multi-degree-of-freedom systems is a new ­ eld still under development.

4. Historical note on nonlinear ship dynamics

The forerunners of the modern approaches are traced back to the 1970s: Zeeman’s
(1977) reformulation of some classical results of roll stability from the perspective of
catastrophe theory bears a strong resemblance to many of the popular geometrical
approaches used today (see also Poston & Stewart 1978). In the 1970s, the study of
large-amplitude rolling in beam waves became topical, perhaps due to the SAFESHIP
project funded by the UK government. Analytical approximations of the steady-state
rolling response with higher harmonics were derived by applying the asymptotic, the
harmonic balance, and other perturbation-based methods (Odabashi 1973; Wellicome
1975; Wright & Marsh­ eld 1980). In these studies, roll was uncoupled and the waves
were considered long compared with the ship’s beam, resulting in a mathematical
model that is basically a classical Du¯ ng-type forced oscillator with a single potential
well. Actually, these were not the ­ rst explorations of the nonlinear roll equation; for
example, Baumann (1955) nicely demonstrated the dependence of the shape of the
frequency-response curve on the form of realistic (GZ)-functions.

Marsh­ eld (1978) published the ­ rst results of the well-known `Admiralty model
tests’, providing concrete evidence about the nonlinear character of the frequency-
response curve and the existence of bistability in a certain range around resonance
(see also Marsh­ eld 1987). Records of subharmonic responses were also presented,
verifying that the roll motion may undergo a period-doubling bifurcation. Analyti-
cal investigations on subharmonic rolling were performed later by the Trieste group
(Cardo et al . 1981). Marsh­ eld has also made the important observation that the
existence of bias towards and away from the wave source produces di¬erent results in
terms of capsize; and that the unbiased model shows a tendency to capsize towards
the wave source. Sway coupling may be necessary for explaining these tendencies,
but roll is quite often studied uncoupled. Some simplifying assumptions about the
roll centre are necessary in order to justify this model (Hutchison 1990). It is quite
common to describe the roll motion on the basis of the relative roll angle as measured
from the local wave slope. Of course, the absolute roll angle, measured from a hori-
zontal line, may also be used (see Blagoveshchensky 1962; Francescutto & Contento
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1998). Analytical studies of steady rolling in beam seas continue to be carried out
up to the present day (Senjanovíc 1994; Peyton Jones & Cancaya 1997).

Odabashi seemed to be the ­ rst person to make the connection with the classi-
cal theory of stability, recognizing that the domain of attraction, rather than the
steady-state, holds the key to the assessment of ship safety against capsize. He pro-
posed the derivation of criteria for ensuring the boundedness of roll motion through
the analytical construction of the so-called Lyapunov functions (Kuo & Odabashi
1975; Odabashi 1977, 1978, 1982). These Lyapunov functions were hotly debated in
the 1970s and 1980s in the naval architectural community, which was perhaps still
unprepared for adopting such highly mathematical techniques.

In the United States, Nayfeh et al . (1973) published a paper about nonlinearly
coupled pitch and roll using the method of multiple scales. In head seas, directly
excited pitch can create growth of roll, which will in®uence back pitch, and so forth.
A critical development is the saturation of the pitch response and the transfer of all
the energy that enters the pitch mode into roll. As stated in their introduction, the
authors had been inspired by Froude’s (1863) observation, published in his discussion
of Scott Russel’s paper at the Institution of Naval Architects, that ships present
undesirable roll characteristics when the natural frequency of pitch is twice that
of roll. Sethna & Bajaj (1978) predicted further amplitude-modulated motions in
the averaged equations of coupled roll and pitch. Nayfeh has come back to this
problem several times since then (see, for example, Nayfeh 1988; Oh et al . 1992). It
is interesting to mention that Paulling had approached this problem earlier from a
di¬erent angle, investigating whether a ship could maintain the `upright’ equilibrium
position in calm sea when roll is coupled with a prescribed heave or pitch motion
(Paulling & Rosenberg 1959; Paulling 1961).

At that time, it was already known from the works of Grim (1952, 1954) and
Kerwin (1955) that roll instability could be generated by the restoring becoming
time dependent when a ship encounters a long regular wave travelling in the same
direction. Fundamentally, this problem, as well as the problem studied by Paulling,
can be reduced to a study of an equation of motion with a harmonically varying
sti¬ness term (`Mathieu’ type). These pioneering studies have inspired signi­ cant
research subsequently (see, for example, Blocki 1980; Sanchez & Nayfeh 1990; Kan
1992). Liaw et al . (1992) found chaos in heave-excited roll of a barge in head seas.

The interest in nonlinear ship dynamics started to surge in the 1970s; but at that
time the computers were still at an embryonic stage and it was perhaps inevitable that
prominence would be given to analytical methods. Unfortunately, these methods are
not only extremely laborious but they also require that the nonlinearities be weak,
thus eliminating much of the most dynamically interesting part of the behaviour.
For the ship-capsize problem in particular, while the nonlinearity of damping can
be considered as mild, the nonlinearity of restoring is strong, and it is inconsistent
to examine capsize without considering a fully nonlinear restoring curve. A di¬erent
viewpoint would thus be needed if an e¬ective solution were to be achieved.

The vast increase in computer power realized in the 1980s and 1990s brought a
wide range of new techniques of numerical analysis of nonlinear dynamical systems
into the limelight. These went well beyond the ordinary simulation based on direct
integration of the equation of motion. Numerical algorithms were developed for car-
rying out continuation of steady states; for directly locating bifurcation points; for
identifying the stable and unstable manifolds either directly or through a vast num-
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ber of automated simulations that unveil the basin of attraction (for a comprehensive
overview see, for example, Foale & Thompson (1991)). Techniques for the characteri-
zation of the responses and also for the extraction of possible di¬erentiable dynamics
from experimental data series have also been developed.

The technique of steady-state continuation (also known as `path following’) was
applied very quickly to the neighbouring ­ eld of ®ight dynamics (Mehra & Carroll
1980).y However, another decade would pass before the technique was used in the
study of multi-degree ship motions. Continuation is the technique employed in order
to determine how a steady motion changes quantitatively as well as qualitatively
when some control parameter is varied. Numerical codes of this kind, tracing sta-
tionary and periodic states and passing successfully over bifurcation points, have
been written by a number of people (Keller 1977; Doedel 1981; Kubicek & Marek
1983; Holodniok & Kubicek 1984; Rheinboldt 1986; Seydel 1988; and others). Con-
tinuation based on Kubicek’s method, coupled with simultaneous stability analysis,
was used for investigating the directional stability of ships with a surge, sway, yaw
and roll mathematical model (Spyrou 1990). Diagrams of steering for multi-degree-
of-freedom ship manoeuvring, derived for operation in calm conditions and also in
uniform wind, showed the existence of fold and Hopf bifurcations. At about the same
time, continuation was employed for the study of some aspects of the behaviour of a
ship slowly turning in waves (Falzarano et al . 1990).

Extensive studies of the bifurcating behaviour of marine vehicles, on the basis of
simulation or by extracting simple generic models, were carried out at the University
of Michigan in the late 1980s. These studies were focused on the behaviour of moored
tankers (single point initially, and, more recently, multi-line), and they pointed out
the existence of pitchfork, Hopf and period-doubling bifurcations and also the pos-
sibility of chaos (Papoulias & Bernitsas 1988; Chung & Bernitsas 1992). A problem
of a similar nature (the behaviour of moored or anchored tankers) was studied in
Germany (Jiang et al . 1987; Sharma et al . 1988; Schellin et al . 1990). Researchers
there carried out stability analyses on the basis of a quite-advanced surge{sway{
yaw mathematical model that included the so-called memory e¬ect discussed above.
Aghamohammadi & Thompson (1990) studied experimentally `­ sh-tailing’ instabili-
ties of a tanker at a single point mooring. Gottlieb & Yim (1993) predicted instability
and chaos in a multi-point mooring system modelled with a simple surge equation
having nonlinear restoring and a coupled wave-structure exciting force. Choi & Lou
(1993) studied the low drift motion of a tanker induced by the nonlinearity of the
mooring line. Jiang (1997) found a Hopf bifurcation creating yaw oscillations in a
tug-tanker tow, depending on the towline length. Control studies on the bifurcations
of marine vehicles were carried out by Papoulias (1991) and Papoulias & Oral (1995).

In all these years the study of nonlinear rolling in beam seas continued to be top-
ical. Nayfeh & Khdeir (1986a; b) and Papanikolaou & Zaraphonitis (1987) presented
studies of large-amplitude rolling based on a combination of analytical perturbation-
based techniques and digital{analogue simulations. Virgin (1987) concentrated on the
onset of chaotic roll oscillations occurring through a period-doubling cascade, which
he observed on the basis of Poincaŕe maps. Thompson and co-workers (Thomp-
son & Soliman 1990; Rainey & Thompson 1991) o¬ered a new perspective on the
ship-capsize problem by considering the capsize process as dynamically equivalent

y Recent developments in aircraft dynamics are summarized in a Theme Issue of Philosophical Trans-
actions of the Royal Society of London (see Thompson & MacMillen 1998).
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(a) (b)

(c) (d)

Figure 6. Simple analogues for ship dynamics in waves. (a) Beam sea rolling;
(b) surging and surf-riding; (c) parametric; (d) pure loss.

to the escape of a ball rolling in a potential well, which is an intrinsically transient
phenomenon (­ gure 6). One of the ­ rst major contributions was the proposal of a
diagram for the practical assessment of a hull’s capsizability, which became known
as the transient capsize diagram (­ gure 7). Extensive cell-mapping and continua-
tion studies were performed for a roll equation with direct or parametric forcing
(see, for example, Thompson et al . 1992). The e¬orts to translate the information
about fractal basin boundaries into design criteria against transient capsize were
very notable. A simple design formula, derived from the displacement magni­ cation
of the linear resonance and validated by Melnikov theory and simulation, was put for-
ward. Another signi­ cant ­ nding was that the maximum (`sustainable’) wave slope
at which capsize is still resisted is very much reduced by the existence of even a small
amount of bias (­ gure 8). Thus, a stability assessment based on a symmetric ship is
bound to give a dangerous non-conservative capsize threshold (for a review of this
research see Thompson (1997)). A recent study of the coupled roll and heave revealed
a capsize-suppression mechanism introduced by the heave coupling (Thompson & de
Souza 1996).

In the late 1980s/early 1990s, capsize due to transient rolling had become a `hot’
topic. In Japan, Kan (1992) followed a similar line of research to that of Thomp-
son, with the important addition, however, of extensive model experiments in the
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large open square tank of the ship dynamics division of the Ship Research Institute of
Tokyo. In the USA, Nayfeh & Sanchez (1990) presented numerical safe basins for the
roll motion in beams and in longitudinal waves (Sanchez & Nayfeh 1990). Another
signi­ cant step forward was the use of Melnikov analysis for predicting capsizal wave
slopes in beam regular waves (Falzarano et al . 1992). Use of realistic restoring rep-
resentations, like a ­ fth- or higher-order polynomial, is, however, problematic when
the analytical route is followed (Scolan 1998). Bikdash et al . (1994) examined the
equivalence between quadratic and cubic damping nonlinearities from a Melnikov
perspective. Hsieh et al . (1994) adapted the Melnikov approach for a random exci-
tation using the concept of Wiggins (1991) for phase ®ux transport out of the safe
basin. This approach was extended for a biased vessel by Jiang et al . (1996). The
interfacing of nonlinear dynamics and stochastic excitation has also been attempted
by others (see, for example, Francescutto 1990).

Liquids inside tanks or a quantity of water shipped on the deck can incur a sig-
ni­ cant e¬ect on the roll dynamics. This problem is a complex one, especially when
impacting loads due to sloshing can take place, and it has been tackled using meth-
ods of varying sophistication (for a review of some earlier ideas see Caglayan &
Storch (1981)). One of the ­ rst studies was by Dillingham (1981), where the solu-
tion of the deck-®ow problem was coupled with the body’s roll motion. Recently,
Armenio & Francescutto (1996) followed a similar approach, but they tackled the
internal ®uid-motion problem by solving the Reynolds averaged Navier{Stokes equa-
tions (RANSE). An approach with a di¬erent focus was that of Murashige & Aihara
(1998a; b), who substituted the internal liquid with a lumped mass placed at the
instantaneous centre of gravity of the liquid, which was further assumed always
to have a ®at surface. This simpli­ cation did not take into account sloshing or
hydraulic jump e¬ects, which certainly a¬ect the dynamics; but, on the other hand,
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this approach revealed a rich content in terms of nonlinear behaviour and also robust
chaos. The authors showed that some nonlinear features could easily be reproduced
experimentally in the laboratory.

Despite the fact that most of the nonlinear-dynamics research has been inspired by
the capsize problem, it is well known that nonlinear behaviour may also originate in
other motion directions. For example, many ships are directionally unstable, and their
steering diagram is S-shaped, tending to turn to port or to starboard depending on
the initial condition, even with the rudder unde®ected (­ gure 9). Several ships have
experienced a sudden loss of directional control during their operation, a phenomenon
known as broaching. They are more vulnerable when approached from the stern by
steep and relatively long waves with celerity near to the ship’s speed. Broaching is,
before anything else, a yaw stability problem. However, in the course of the tight turn
that follows the `loss of heading’, capsize may be incurred. For a study of this, `post-
critical’, stage of broaching, the combined yaw{roll dynamics need to be considered.
It seems that Davidson (1948) was the ­ rst to point out that a directionally stable
vessel in calm water could become unstable in following waves. Wahab & Swaan
(1964), Eda (1972) and Motora et al . (1981) provided further insights. On the basis
of linearized equations, they showed that for the `right wave’, instability will occur
when the ship lies on the down slope with the stern near the crest. Experiments
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of broaching on the basis of free-running models in square basins were pioneered
by Nicholson (1974), Fuwa et al . (1982) and Marsh­ eld (1987). The application
of a nonlinear-dynamics approach recently produced a fundamental understanding
about the phenomena underlying broaching. The key concepts and developments are
summarized in x 4.

Surf-riding is another nonlinear type of behaviour, having its origin in the surge
dynamics. It is particularly interesting because it can work as a precursor to broach-
ing. A ship may be forced to advance with a speed equal to the wave celerity, despite
the fact that the propeller thrust corresponds to a considerably lower, or higher,
speed. Such behaviour was ­ rst studied by Grim (1951), and was reconsidered by
him later (Grim 1983), pointing out the analogy with the behaviour of a pendulum
under constant torque. Experimental evidence was provided by Du Kane & Goodrich
(1962). Kan (1990) investigated the evolution of asymmetric surging and the tran-
sition to surf-riding when the peak of the ®uctuating surge velocity reaches the
wave celerity. Similar studies were undertaken in the same period by Umeda (1990).
Surf-riding can trigger broaching when the angle between the direction of the waves
and the ship is non-zero (quartering waves). In this laterally expanded space, the
surf-riding states belong to a closed curve, of which fold and Hopf bifurcations are
common features. Chaotic surf-riding based on the Feigenbaum scenario has been
predicted (Spyrou 1995, 1996b).

For a craft moving at a very high speed, some part of the vertical lift force sup-
porting the hull is of a hydrodynamic nature due to the occurrence of planing. High-
speed craft in planing conditions are known to exhibit a variety of dynamic insta-
bilities. A very well-known case is porpoising, an instability of the coupled heave
and pitch (Martin 1978; Troesch & Falzarano 1992). Its simplest manifestation is a
self-sustained oscillation in calm sea (implying the occurrence of a Hopf bifurcation
event) when the speed exceeds a certain threshold. Other known types of unconven-
tional behaviour are sudden heel, chine walking (roll oscillation), bow diving, and
the pitch{yaw{roll oscillations known as `corkscrew’ (Blount & Codega 1992). Gen-
erally, high speed is believed to a¬ect dynamic stability very considerably, and, with
the current emphasis on high-speed maritime transportation, this area is expected
to receive considerable attention in the near future.

5. The instabilities of the stern quartering sea

The work on ship stability of Paulling and co-workers at the University of California
at Berkeley, although not falling into the domain of nonlinear dynamics, has inspired
many developments in this ­ eld. The experiments at San Francisco Bay (Chow et al .
1974) consolidated the idea that a ship may capsize in a following sea environment
when any of the three `fundamental’ instability mechanisms below occur.

(a) Pure loss of stability. Sudden, non-oscillatory capsize due to slow passage
from a negative restoring region (around the wave crest).

(b) Parametric instability. Gradual build-up of rolling due to internal forcing
coming from time-dependent (strictly speaking position-dependent) restoring.

(c) Broaching. The sudden loss of controllability in steep waves approaching from
the stern. It gives rise to large heel, and, possibly, to capsize during the tight turn
triggered by the loss of control.

Phil. Trans. R. Soc. Lond. A (2000)



1752 K. J. Spyrou and J. M. T. Thompson

co
nt

ro
l p

ar
am

et
er

 (e
.g

. t
rim

)
rudder angle

rate of turn

Figure 9. Steering diagram under the e® ect of a varying parameter such as trim.

w
w

1.8

1.6

1.4

1.2

1

6050

h

403010
0.8

200

pure-loss

4   0
2

   e2
a =

parametric

Figure 10. See opposite for description.

(a) A uni¯ed approach for p̀ure loss’ and parametric instability

The qualitative dynamics of pure loss and parametric instability can be represented
by a nonlinear `Mathieu’ equation with some small damping. The characteristic of
pure loss is that the instability is in®icted and the capsize occurs during a single
passage from a crest. The three main factors that determine survivability are:

(a) whether the restoring becomes negative in some region around the wave crest;
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(b) the magnitude of some initial heel and/or roll velocity as the ship enters into
the negative restoring region;

(c) whether the speed of the ship relative to the wave celerity is su¯ ciently low
that, given the negative restoring and the initial o¬-balance position, a heel
angle ­ nds the time to develop up to dangerous levels.

Pure loss is an intrinsically transient phenomenon. The parametric instability on the
other hand is traditionally examined on the basis of steady-state stability analysis
of the trivial upright equilibrium state using as parameters the frequency ratio and
the wave steepness. In a practical context, however, what is important is whether
capsize-angle levels are reached within a small number of wave-crest encounters. This
calls for resetting the focus on the transient dynamics. When the considered number
of waves is small, the required amplitude of variation of restoring can be considerably
in excess of the corresponding steady-state amplitude, particularly for the principal
and the fundamental resonance, which are the most relevant to ships. An approach
based on transient dynamics allows for uni­ cation of the treatments of pure loss
and parametric instability and for developing an assessment on the basis of a single
diagram like ­ gure 10 (Spyrou 2000).

Although Mathieu’s equation probably `captures’ the fundamental dynamics, con-
sideration of extra features|like water shipped on deck, change of damping due
to deck submergence, etc.|would certainly add `new dimensions’ to this analysis.
Another matter of concern is the nature of the excitation: ocean waves very rarely
constitute a `monochromatic sea’. Even in such a highly idealized environment, the
geometry of real ships’ hulls could only result in a cyclic variation of restoring by
coincidence. Subsequently, a Hill-type equation would be deemed more appropriate,
but there is little possibility that some speci­ c form could be adopted as a generic
model of design excitation. Not only is the excitation non-cyclic, but its main char-
acteristics may be maintained only for limited time. For this reason, the asymptotic
stability information derived from the Strutt diagram should be treated with caution.
Viewing these problems from a di¬erent perspective, several authors have considered
a stochastically varying parametric term (see, for example, Roberts 1982), aiming to
develop some kind of `statistical’ ship-stability criterion.

Coupling with other motions will undoubtedly bring about a number of signi­ cant
new e¬ects into the dynamics: coupling of roll with lateral and rudder motions should
in®uence the build-up of roll as the heading of the ship will be changing and a sway
force will be excited. Another in®uence, examined in detail by Spyrou in this issue
(pp. 1813{1834), arises when the ship cannot move with a nearly constant surge
velocity due to the relative strength of the longitudinal wave force.

(b) Recent insights into broaching

Recent studies of broaching have revealed a rich content in terms of nonlin-
ear dynamics (Spyrou 1996a; c, 1997a). Broaching may occur during the transition

Figure 10. A unifying diagram for capsize due to pure loss and due to parametric instability. The
domain of capsize due to the parametric scenario is based on escape within eight cycles. The white
regions that exist inside the principal and fundamental resonance regions indicate the occurrence of a
`quick’ parametric-type capsize.
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towards surf-riding, or it may occur at a lower speed (and usually with higher waves)
due to loss of stability of the ordinary periodic yaw motion. The sequence of the phe-
nomena involved in the two routes, under gradual increase of the nominal Froude
number, is summarized in ­ gure 11.

The evolution of the qualitative surge dynamics and the onset of surf-riding are
shown on planes (a){(d) in ­ gure 11. When the heading of the ship does not coincide
with the wave direction, the surf-riding equilibria belong to a closed curve having
unstable (in surge) points near the crest and stable or unstable points (depending
on the proportional gain of the autopilot) near the trough (plane (e)). When a ship
operates with a non-zero heading relative to the wave, and the homoclinic connec-
tion event (see planes (c) and (d)) destroys the periodic response, the remaining
possible motions are either surf-riding or a rapid turning motion that corresponds
to broaching. Which of the two will occur depends on whether or not the autopi-
lot gain is su¯ cient for attracting the orbit leaving the periodic pattern, and, thus,
creating capture into stable surf-riding near the trough. An example of broaching is
presented on plane (f). It was discovered that surf-riding could be realized in a peri-
odic sense (Hopf bifurcation) and even in a chaotic sense (period-doubling cascade).
On planes (g){(i) the key phenomena can be seen along with their sequence when
the angle of the rudder, ¯ , is treated as the control variable (Spyrou 1996b).

Finally, we describe the occurrence of broaching directly from the periodic pattern
and without serious involvement of the surge dynamics (plane (j)). At a critical
heading (for a certain ship and with ­ xed wave characteristics), a ®ip bifurcation
occurs, creating a stable subharmonic response. This causes a rapid increase in the
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amplitude of yaw oscillation, leading, shortly, to a backwards turn of the response
curve, which precipitates a sudden and dangerous jump to resonance. The ensuing
transient behaviour will correspond to cumulative-type broaching (Spyrou 1997a).

The transient dynamics of broaching have been studied thus far in respect of two
speci­ c transitions. The ­ rst transition referred to the process of escape from surf-
riding after voluntary reduction of engine power or change of heading (see ­ gure 12
and Spyrou (1996c)). A second scenario considered targeted the disappearance of the
periodic motion due to the homoclinic connection bifurcation (Spyrou 1997b).

6. Future directions for research

The ­ eld of nonlinear ship dynamics is only now approaching maturity, and it is
believed that several exciting new developments will be realized in the near future.
In the authors’ opinion, some of the areas in which further activity is expected, or
would be very welcome, are the following.

(1) Integration of the probabilistic character of the seaway into the study of non-
linear dynamics.
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(2) More rational description of hull loads taking better account of the detailed
shape of a ship hull.

(3) Development of mathematical models of coupled motions.

(4) Instabilities that are intrinsic to high-speed operation.

(5) Development of improved techniques for analysing multi-degree dynamical sys-
tems.

(6) Use of the concepts of nonlinear dynamics in the modelling process.

(7) Making the link between nonlinear dynamics and design.
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